In the more than 100 years since our founding, Fujita has contributed to society and continued moving forward to create new value through construction operations.

By adding the comprehensive strength of the Daiwa House Group to the domestic and overseas construction engineering know-how passed down through our “Enterprising Spirit” and “Honest Production”, we now offer a wide range of total solutions that extends beyond the construction sector.

The world continues to change at a remarkable rate day by day. We handle this constantly changing economic environment by responding in the best way possible on a global scale, meeting the needs of our customers and society, handling new challenges with a spirit that propels us towards solutions that are “Newer, Stronger, Better”.

Thanks to your continued support and patronage, we will continue to provide the comprehensive strength of Fujita to propose new values that meet our customers’ needs.

Creating the future, together

With the intention of making our customers’ dreams come true in more ways than one—by combining the experience and abilities of both companies with the traditions we have developed as members of the Daiwa House Group we will construct our future.
Fujita construction engineering

Fujita applies its expertise, technological strengths, and track record established over more than 100 years as a general construction company to offer a full range of solutions from property usage to planning, construction, and aftercare.

Fujita construction solutions for clients
- who seek partners for new business projects
- who want Fujita to propose facilities that align with their business plans
- who desire any innovative, up-to-date construction plans
- who inquire about energy-related equipment which would be best for their facilities
- who want their facilities to be environmentally friendly
- who want to maintain good relations with their neighbors during construction

At Fujita, we can accommodate our customers’ needs through accurate planning and proposals, optimized, streamlined designs, and construction technology backed by years of construction and civil engineering experience and R&D.

Fujita property solutions for clients
- who want property information in order to expand their business
- who have unused land and would like to utilize effectively
- who would like advice on adding their property
- who want property information in order to expand their business
- who seek partners for new business project
- who want Fujita to propose facilities that align with their business plans
- who desire any innovative, up-to-date construction plans
- who inquire about energy-related equipment which would be best for their facilities
- who want their facilities to be environmentally friendly
- who want to maintain good relations with their neighbors during construction

By combining technology developed in Japan with our wide-ranging overseas experience and successful track record, we can support our clients with all aspects of overseas business expansion—from property surveys to design, permit applications, construction, and maintenance operations.
The new Fujita

Fujita technology

We use advanced technology to solve our customers’ diverse problems.

The Fujita advantage

Our goal is to become our customers’ number-one partner through knowledge and experience gained over many years using our technological strength as our advantage.

Fujita’s track record

We have an impressive track record spanning everything from urban renewal to large-scale overseas projects.
We want to have wide open spaces inside our building.

Hybrid building systems

The FSRPC-B construction method is a proprietary Fujita technology that uses column and beam joints to combine reinforced concrete columns with steel beams. The FRASH construction method is a new hybrid method that uses reinforced concrete wrapped around the ends of steel beams.

- We create columnless wide open spaces for logistics facilities, commercial facilities, hospitals, offices, and more.
- Our construction times and costs are lower than when conventional steel-reinforced concrete columns and steel beams are used.
- By combining conventional reinforced concrete and steel construction methods, we enable more flexible material selection and achieve more streamlined construction systems.

We want to build residential high-rise buildings that are highly earthquake-resistant.

Reinforced concrete high-rise technology

- We create high-rise buildings using reinforced concrete.
- Residential high-rise buildings can be built using reinforced concrete construction, which has excellent heat and sound insulation properties and doesn't sway much during earthquakes or in strong winds.
- The use of ultra-light concrete for columns, with a compressive strength in excess of 100 N/mm², creates a smaller cross-section to increase usable living space.
- The precast concrete construction method, in which components are made in a factory, achieves higher quality and shorter construction times.
- The FHRC construction method uses ultrahigh performance concrete to create high-rise technology.

We want to strengthen our building in preparation for major earthquakes.

Seismic isolators act to prevent swaying

- Seismic isolators are flexible in the horizontal plane, withstanding significant deformation in order to absorb the energy of earthquakes.
- We have developed viscous dampers that utilize laminated rubber bearings and oil and put them to practical use as seismic isolators.

Seismic isolation technology

- Installing seismic isolators between the building and the ground inhibits the transfer of earthquake ground movements to the building.
- Seismic isolators are flexible in the horizontal plane, withstanding significant deformation in order to absorb the energy of earthquakes.
- We have developed viscous dampers that utilize laminated rubber bearings and oil and put them to practical use as seismic isolators.

Seismic quake control technology

- The use of seismic quake control devices installed inside buildings greatly inhibits the swaying of buildings during earthquakes.
- Swaying energy is absorbed through the deformation of seismic quake control devices.
- We have developed steel panel dampers and viscous dampers and have put them to practical use as seismic quake control devices.

- The steel is reinforced to resist bending.

Buckling-restrained braces (FIRST braces)

- By covering the steel core with buckling-resistant materials, we create high-performance earthquake-proof components that prevent buckling during compression.
- This beam consists of a steel H-beam core inside a steel pipe made from buckling-restraining materials, with the space in-between filled with mortar.
- This simple structure reduces component production costs.

Simulation of floor vibration during the design phase

Yureiza III, a floor vibration analysis system

- By using Yureiza III, a floor vibration analysis system, we can predict floor vibrations with high precision over short periods of time and take that into account in our designs.
- Ideal for designing spaces that span large areas with few columns and are prone to swaying.
- Floor vibration can be shown via 3D animation.
- We have developed and put into practice a variety of technologies for counteracting vibration, including a device that absorbs vibration by means of a moving weight.

Please see our website for more detailed information on our technology.

https://www.fujita.co.jp/solution-and-technology/
We want to create a high-quality building foundation.

High-quality, defect-free pile construction

The F-ED method
Concrete cast-in-place pile construction method (earth-drilled piles)

Fujita is able to construct high-quality, high-performance earth-drilled piles using five technologies that incorporate proprietary improvements.

- We construct high-quality piles with greater construction accuracy than conventional methods.
- We have achieved reliable earthquake-proof performance by making changes to pile head concrete compaction and reinforced frame assembly.
- We construct high-quality piles with greater construction accuracy than conventional methods.
- We have also adopted an extremely tenacious, breakage-resistant structure for connections.
- We reduce the soil left behind after excavation and the amount of concrete and rebar used for the piles and foundation, which also reduces the environmental impact.

Maintaining safety by preventing pile and foundation damage during earthquakes

The FSR-pile method
The semi-rigid pile head connection method for concrete cast-in-place piles

This method can halve the effect of earthquakes and can greatly reduce the damage to the pile head and foundation.

- We have also adopted an extremely tenacious, breakage-resistant structure for connections.
- We reduce the soil left behind after excavation and the amount of concrete and rebar used for the piles and foundation, which also reduces the environmental impact.

High-efficiency foundation beam through-hole reinforcement method

The star-shaped foundation beam construction method

This construction method provides efficient reinforcement and lets us reduce the height of foundation beams compared with conventional methods. This is done by combining two isosceles triangle-shaped rebars into a star shape:

- This method is ideal for condominiums, service-oriented residences for the elderly, hospitals, schools, and steel-frame buildings with pits.
- It shortens construction time and reduces construction costs.

We want to reduce the radioactive waste produced.

A revolutionary technology that prevents concrete from becoming radioactive

Low activation concrete

Nuclear reactors and particle accelerators for medicine and research use concrete shielding to help block radiation. When the reactor is scrapped or the equipment is dismantled, radioactive waste is produced. Using low activation concrete makes it possible to reduce the amount of radioactive waste produced.

- This concrete is just as easy to work and process as normal concrete.
- This concrete can reduce the enormous disposal costs resulting from the production of radioactive waste.

We want to use computerization to provide buildings that satisfy customers

Information, communication and robotization technology

Revolutionizing building production through 3-D modeling

BIM

We realize efficient building production processes by combining various architectural information, from design to construction and maintenance, into 3-D models.

BIM stands for building information modeling. Using this technique, a 3-D construction model is made and the information it provides is used to improve construction quality.

- 3-D models allow design information to be visualized, expediting stakeholder consensus.
- Prevents errors during execution by enabling the discovery of interference or non-conformity between parts.
- Information given to the 3-D model is used for aggregating components and managing maintenance.

We want to reduce inspection labor and improve construction quality.

Finish checker

Interior finish inspection system

This system performs interior finish inspections using a tablet pc to considerably reduce time compared to conventional methods where materials are hand written.

- Easy operation that even first time users can handle.
- 50% reduction in the time needed to create revised instructions manuals.
- Faster than handwriting to improve inspection productivity by 50%.
- Eliminates the necessity of waiting for residents to show their apartments, which enables inspections to progress smoothly.

We want to centralize construction data and make construction more efficient.

CIM

Quality and flexibility in woodworking construction can be improved by adding the time axis to 3-D modeling data to manage the data in four dimensions

CIM stands for Construction Information Modeling/Management. It is a new system that combines and integrates construction data, treating the entire construction and production process in a unified manner.

- Comparative reviews and consensus building during the design stage can be accelerated by effective use of construction ICT.
- This improves the quality and flexibility in woodworking construction, and it raises the level of maintenance management.

We want to speed up recovery from emergencies and disasters.

Remote control robots Robo QS

Making it possible to work safely and quickly even in dangerous locations

Recovery activities carried out at the site of debris flow disasters and collapses can be carried out safely and quickly through remote control of construction machinery by human operators from a safe location.

- The robot can easily be installed in the driver’s seat of standard construction equipment.
- Fujita also has a successful track record with other unmanned construction technologies, including remote earthworks systems, unmanned RCC construction, unmanned steel frame construction, and unmanned measuring systems.

Please see our website for more detailed information on our technology.

https://www.fujita.co.jp/solution-and-technology/
We want more precise tunnel boring.

We want to bore tunnels in a safe manner.

Providing solutions to our customer’s needs

Seismic While Excavating SSRT

SWE-SSRT

(Seismic While Excavating SSRT)

This is a technology that conducts continuous, highly accurate surveying of ground conditions up to 300 meters ahead of the tunnel face (the furthest point of the tunnel bore) by conducting a shallow seismic reflection tunnel survey (SSRT) using the tunnel excavation blasts themselves as the seismic wave source.

- Measurements both within and outside the shaft are taken continuously with every blast, improving the surveying accuracy.
- The surveying does not interrupt the tunnel boring process, as it happens while tunnel boring occurs.
- This process costs less than processes that require a special seismic wave source.
- Normally, ground conditions 300 meters ahead of the tunnel face can be analyzed, which greatly margin for changing plans and procuring equipment.

We want to reinforce a dam or embankment in preparation for natural disasters.

Utilizing bottom mud from the bottom of ponds and reservoirs as embankment construction material

The stabilized muddy soil embankment method

If a fill dam embankment needs repairs, bottom mud and other accumulated soil can be freely used to produce embankment soil with excellent strength, water shielding properties, and deformation resistance.

- This method is useful for both repairing embankments and removing bottom mud.
- No money is spent purchasing embankment soil.
- Even if the soil undergoes deformation, it sticks together and resists cracking.

Reinforcement of sea embankments to protect against tsunamis

The fresh bank method

The stabilized muddy soil embankment method was developed to turn existing sea embankments into “sticky structures” that were suited to the tsunami protection measures promoted after the Great East Japan Earthquake.

- Reinforcing the embankment surface protects it from encroachment by waves and tsunami overflows.
- It has excellent deformation qualities and is resistant to damage during earthquakes.

Utilizing bottom mud from the bottom of ponds and reservoirs as embankment construction material

The FCF method

Winner of the Prize for Excellence at the 5th Infrastructure Technology Development Awards in 2010

FCF: Fast Failsafe Climbing Form

This system uses multiple robotic jacks to raise work platforms and economical.

- Control devices and sensors allow the work platform to remain level while being raised.
- This technique combines the advantages of the form construction method and the sliding form method.
- The FCF method combined with aluminum dome roofing allows the installation of safer work platforms with fewer constraints for constructing dome roofs.

We want to build bridges and aluminum domes in a safe and economical manner.

Raising work platforms using robotic jacks

The FCF method

Winner of the Prize for Excellence at the 5th Infrastructure Technology Development Awards in 2010

FCF: Fast Failsafe Climbing Form

This system uses multiple robotic jacks to raise work platforms that include integrated scaffolding and forms. Because it can be assembled and disassembled on the ground, it is very safe and economical.

- Control devices and sensors allow the work platform to remain level while being raised.
- This technique combines the advantages of the form construction method and the sliding form method.
- The FCF method combined with aluminum dome roofing allows the installation of safer work platforms with fewer constraints for constructing dome roofs.

Please see our website for more detailed information on our technology.

https://www.fujita.co.jp/solution-and-technology/
Fujita technology:
Providing solutions to our customer’s needs

Environmental technology

We want an estimate of the effects our construction project will have.

Noise and vibration simulations
We can estimate how noise and vibration produced during construction and by building operations will affect the neighborhood.
- We estimate noise and vibration and assess changes to the surrounding environment.
- We propose effective countermeasures.

Wind environment simulations
We estimate changes to the wind environment surrounding the building.
- We estimate wind direction and speed and assess changes to the surrounding environment.
- We propose effective countermeasures.

We want to clean up ponds and lakes in parks or other public areas.

Maintenance-free algae growth prevention
Festa method
This method prevents algal growth and improves water quality without the need for ongoing maintenance, with the installation of floating islands for growing rabbit-ear irises and other aquatic plants in ponds.
- The plants on the floating island grow back each year without the need for gardening maintenance.
- Water quality can be improved without the need for any manual intervention.
- Floating islands become a habitat for aquatic organisms, helping to preserve biodiversity.

We want to clean up heavy metal pollutants.

Removing pollutants using special plants
Phytoremediation
The use of plants that can remove toxic heavy metals is a cost-effective, environmentally friendly way of cleaning up pollutants.
- We use special plants (hyperaccumulators) that can absorb and store high concentrations of specific heavy metals.
- These plants store more than 80% of the heavy metals they absorb in their stems and leaves, making it possible to efficiently remove pollutants by harvesting the above-ground plant matter.
- We have hyperaccumulators that effectively remove cadmium, zinc, and arsenic.

We want to quickly improve soft ground.

Environmentally friendly soil improvement additive
FT Madokira
Soft, waterlogged soil (dredged soil, excavated soil, mud, etc.) can instantly be improved by mixing in this additive.
- With paper sludge ash produced during the paper manufacturing process as its base substance, this additive is non-toxic and has excellent water absorption properties.
- This environmentally friendly substance has a more neutral pH than generic cement-based and lime-based solidifiers.

We want to recycle incinerated ash
Desalination of incinerated ash and low solubility of lead etc.
The FAST-BOX system
- A compact and effective on-site stabilization accelerating system for ash produced during incineration of general waste.
- This system can be used for pre-treatment of ash prior to final disposal or recycling, desalination of incinerated ash, or reformulation of ash to meet acceptance standards.
- This system can contribute to safe and secure final waste disposal site.
- This system can contribute to the promotion of recycling of waste other than incinerated ash (e.g., residue on sludge).

Reduce low frequency sounds generated by construction work.
Active Noise Control (ANC)
The ANC system reduces the low frequency sounds contained in construction machinery noise and tunnel blasting charge sounds by putting a reverse phase sound wave on top of one another.
- ANC system can reduce the low frequency sound which is difficult to reduce by the soundproofing wall.
- The ANC system can be attached to noise sources that move (e.g., backhoes).

Please see our website for more detailed information on our technology.
https://www.fujita.co.jp/solution-and-technology/
The Fujita advantage

Overseas operations
Supporting the overseas expansion of companies based in Japan

We offer high-quality, rapid construction of the factories, logistics centers, and operational centers required by our customers who are planning overseas expansion. Our local employees understand the unique business environment, climate, and culture of that country or locale and can propose the plan most suited to the customer’s overseas strategy.

Top-class Japan-based general contractors in China and Mexico
Active business development in ASEAN countries and India

With the proven track record and overall capabilities of the Daiwa House Group, we aim to offer our support services for companies expanding overseas.

We can recommend general contractors that offer Japanese levels of quality overseas.

At Fujita, we strive to help you with business localization, which includes recommending accurate technology and high-quality services of the level available only from Japanese general contractors that train and utilize outstanding local human resources overseas. Our own local employees provide reliable support for our customers’ overseas strategies that ranges from preliminary property surveys and basic design to post-construction maintenance.

Localization services by Fujita (China) Construction Co., Ltd.

With some 30 years of experience and expertise, our local Chinese subsidiary Fujita (China) Construction Co., Ltd. has both Japanese employees and Chinese employees who understand local conditions as well as Japanese business practices and can provide detailed solutions to customer needs.

Technological strengths (construction capabilities) for meeting the needs of customers overseas

Oversea climates and soil conditions pose the risk of lower building durability and safety. At Fujita, our personnel understand Japanese business practices as well as the local culture and systems, allowing us to build reliable factories, logistics centers, residential and commercial facilities, high-rise buildings, and infrastructures. Fujita also provides help in applying for the permits required by the laws of each country in order to enable rapid start and completion.

Factories
High-rise construction
Infrastructure

For more detailed information about our overseas operations, please see our website:
https://www.fujita.co.jp/global/
The Fujita advantage

Urban renewal

Fujita has the ability to improve customers’ property values and business values through project proposals based on our construction technology, our ability to coordinate complex local ownership rights, and our expertise backed by specialized knowledge related to diverse business methods and permits.

The Fujita advantage

Urban renewal

Developing attractive communities

Fujita has the ability to improve customers’ property values and business values through project proposals based on our construction technology, our ability to coordinate complex local ownership rights, and our expertise backed by specialized knowledge related to diverse business methods and permits.

Achieving urban renewal through a variety of business methods

Urban renewal

We support initiatives that promote city-wide redevelopment to solve urban problems.

Land reallocation

We create vibrant communities through urban development and urban nurturing based on the Land Readjustment Act.

Equivalent exchange

We effectively use land by developing apartment complexes and other buildings through use of special taxes in property exchange.

Real estate investment

We acquire land and optimally construct and manage buildings such as hotels and offices to revitalize the community.

Project proposals

We have a proven track record of receiving and completing orders for numerous major projects through our technological strengths and our ability to propose projects that meet our customers’ needs.

SOLUTION

Land reallocation

We conduct urban development and community planning that maintains public facilities such as roads and parks whilst promoting utility value of residential lots.

In this comprehensive urban development method based on the Land Readjustment Act, we improve roads, parks and other public facilities as well as residential lots whilst taking full advantage of existing ownership rights relationships. Fujita acts as the urban development coordinator, utilizing this method to work with landowners, administrators and enterprises to develop diverse and complex range of city plans for housing, industry, commerce, logistics, etc., to create a sustainable urban development.

Specified land reallocation project at the Kanade-no-Mori JR Tsudanuma Sta. south exit (Narashino City, Chiba)

In response to regional needs, we coordinated urban development for a planned population of 7,000 people focused on a city that can be inherited by future generations. Under a theme of “Landscape, Safety and Security, Environment”, we introduced area management to improve public facilities, attract and build large-scale apartment complexes and commercial facilities, working alongside the region to promote.

Real estate investment

We contribute to area development by providing new added value to cities.

Fujita acquires land, then constructs and maintains optimal buildings, such as distribution centers, hotels, rental apartments, offices and commercial facilities upon consideration of the area, market trends, etc.

Logistics warehouse development

i Missions Park Misato (Misato City, Saitama)

Agricultural land to be urbanized was obtained via permit according to procedures detailed in article 34 section 12 of the City Planning Act, and the facility was then constructed. This 3-story distribution center has a floor area of approximately 22,000㎡ and is utilized as a logistics network base.

Hotel development

Hotel Vista Premio Tokyo Akasaka (Minato City, Tokyo)

This is a hotel development project in a good location. It faces Hitotsugi Street in Akasaka, Minato City and is approximately four minutes on foot from Tokyo Metro Akasaka-Mitsuke Station. This is a hotel that specializes in accommodation only. It has 11 floors above ground, a total floor space of approximately 4,400㎡ and 140 rooms in all. It is used by many people for business and sightseeing purposes.

Rental apartment development

Lilas Shinagawa-Minami (Shinagawa City, Tokyo)

This is a rental apartment building with a total of 85 units in 12 floors above ground. It has a very convenient location – approximately four minutes on foot from JR Shinagawa Station and approximately six minutes on foot from Shinbamba Station on the Keikyu Main Line – among rental apartment development projects being deployed mainly in central Tokyo.

Visit our website for more information on our city revitalization efforts.

https://www.fujita.co.jp/toshisaisei/
The Fujita advantage

Environment Advanced solutions for helping the global environment

The environment is one of the pillars of our operational focus, in accordance with the Fujita Eco-Charter. We contribute to the creation of a sustainable society through a variety of efforts, from constructing buildings that combine energy efficiency with comfort, to developing environmentally friendly construction methods and through water treatment and renewable energy projects. We then share our techniques and know-how with the world to solve social issues indicated as UN SDGs (sustainable development goals).

Environmental efforts

As a general construction business, Fujita has been actively engaged in important environmental issues from early in its history.

- 1989: Established the first Global Environment Office in the general construction industry.
- 1990: Created the company slogan: “Creating Superior Environments”.
- 1993: Created the Fujita Eco-Charter.
- 1997: ISO14001 is obtained by the Tokyo branch—the first time for a general construction company.
- 2010: Created our biodiversity conservation policy.

We operate environmental management systems throughout the company and continue to improve environmental performance based on risk and opportunity.

SOLUTION

Projects and proposals for addressing environmental issues

We provide construction plans, including zero-energy buildings (ZEBs)*, that combine both environmental friendliness and comfort.

Eco-friendly natural lighting

- Eaves (including balconies) and movable louvres control sunshine and sunlight, reducing the energy spent on lighting and air conditioning.

Landscaping in harmony with nature

- We propose comfortable spaces with lush greenery. Planting is performed on walls to fuse buildings with nature, effectively improving the urban environment by reducing the heat island effect, promoting energy conservation, ensuring biodiversity and improving the landscape.

Effective energy conservation using natural air flow

- Air conditioning usage is minimized by installing eco-atria that make use of natural breezes and light.

Simulation technology for making environmentally friendly designs

- Buildings can be designed to be very energy efficient by the use of simulation technology to conduct light and air cow analyses (environmental measurements).

* What is a zero-energy building (ZEB)?

This is a general term for structures that consume zero net primary energy throughout the course of a year thanks to the use of energy conserving techniques and renewable energy.

SOLUTION

Overseas environmental projects

Providing quality water treatment services

In 2013, we established a Mexican subsidiary, Fujita Integral México S.A. de C.V., for domestic provision of maintenance and related services for wastewater treatment because water is such a valuable and expensive resource in the country.

In April, 2016, the water quality analysis center affiliated with the company acquired certification (ISO 7025) from EMA, a domestic certification organization. This certification enabled the provision of even more reliable water quality analysis services to our customers.

Using rice husks as fuel to generate efficient biomass energy

In October, 2017, we started a project selling electricity generated from facilities we built that use rice husks to generate this power in the Ayeyarwady region of Myanmar.

We faced issues such as pollution generated by improper processing of rice husks from the polishing mills as well as chronic power shortages.

By taking the rice husks, which had not been effectively utilized, and using them as fuel, we further realize biomass power generation with higher efficiency and lower cost to contribute to the creation of a low-carbon community in the region.

Reducing construction site carbon dioxide (CO2)

We have introduced FCMS, a system that constantly measures the amount of CO2 generated by construction machinery and equipment at tunneling shield and other construction sites. This makes CO2 emissions “visible” to increase energy conservation awareness. Used in combination with CO2 reduction technology according to the generated CO2, this system significantly reduces emissions.

- CO2 reduction technology
 - Using energy generated when tower cranes unload materials for other equipment.
 - Using hybrid backhoes and other energy-saving construction equipment.
 - Using LEDs for temporary shed lighting.
 - Setting up solar panels in offices, work sites.
 - Dehydrating drilling sludge to reduce its volume as well as fuel consumption.

For more information on our environmental efforts, visit https://www.fujita.co.jp/environment/
The overall capabilities of the Daiwa House Group

Group synergy effect

Fujita became a member of the Daiwa House Group in January 2013. The Daiwa House Group is a company committed to “co-creating the value for people, cities, and lives,” a company with major growth potential in a wide variety of business sectors that has accepted the challenge of creating new value through its “future-indispensable” operations aimed at benefiting society. By harnessing the capabilities of this group, the technological strengths and expertise developed by Fujita will be even more effective at meeting the expectations of customers and society.

SOLUTION

Business partnerships throughout Japan

We are expanding on various development projects by combining Fujita’s wealth of development and construction know-how with the Daiwa House Group’s wide range of business capabilities.

Industrial complex development

Ibarakikita Techno Town

Ibarakikita Techno Town (Ibaraki City, Osaka)

We are developing an approximately 47ha integrated industrial complex for distribution processing and logistics related companies complete with living arrangements in proximity to the Shin Meishin Expressway Ibaraki Sendai interchange. Saito Tobu LLC (SPLC), which was formed by Fujita and Daiwa House Industry will be responsible for enforcing the land reallocation agreement while Fujita will handle construction. We will combine the two companies’ management resources (building design, construction, management and operations knowhow) in order to promote the sale of industrial land and attract companies as well as revitalize regional economy.

Complex building development

GRANODE facility development

GRANODE Hiroshima

GRANODE Hiroshima is a complex facility developed by Daiwa House Industry in Block 5 of the Futaba no Sato area at the North Exit of JR Hiroshima Station. It was completed in March 2019 with the design and construction by Fujita. This complex building consists of stores, offices and a hotel in a total floor space of 50,000 m² in 20 floors above ground and two basement floors. It is hoped that this will be a base of business and tourism as well as the new face of the JR Hiroshima Station area.

Hotel development

Daiwa Roynet Hotel Nishi-shinjuku

This is a hotel development project with a total floor space of 120,000 m² and 280 guest rooms in 14 floors above ground and one basement floor in the Nishi-shinjuku area where redevelopment is underway.

Creating outstanding technology through a cooperative system

Through the synergy between Fujita’s technological strengths as a general contractor and Daiwa House Industry’s technological and commercial development capabilities as a home builder, we are putting our effort into the development of new technologies to meet our customers’ needs.

Steel buckling-restrained braces

These braces resist bending even when compressive force is applied during earthquakes.

DFII-glas

This is simulation software that calculates delivery times from car navigation data and suggests optimal locations for central logistics facilities.

The Daiwa compression brace earthquake-proofing method

This is a new method developed for the purpose of reducing noise, vibration, and dust in comparison with conventional construction.

Floor vibration analysis system for large facilities

The power of this system has been demonstrated through the design of logistic facilities, factories, and more. It allows post-completion floor vibration to be analyzed.

The star-shaped foundation beam construction method

This reinforcement method makes it possible to install large-diameter through-holes and passageways in reinforced concrete foundation beams.

Dual core braces

These braces increase the range of usability for steel buckling-restrained braces as vibration control components. They improve the flexibility of component design and remove constraints for connectors.
Fujita’s track record

Construction

Distribution

Production facilities

Public facilities

Medical and welfare facilities
Educational facilities

- Nihon University College of Economics Bld. 3 [Tokyo, 2017]
- Shonan Gakuin High School [Kanagawa, 2013]
- Kindai University School of Law New Classroom Bld. C [Osaka, 2016]
- Hiroshima Shudo University Classroom Bld. 3 [Hiroshima, 2013]

Office buildings

- Hiroshima Shudo University Classroom Bld. 3 [Hiroshima, 2013]
- Kindai University School of Law New Classroom Bld. C [Osaka, 2016]
- Shin Urayasu TK Bld. [Urayasu Ongaku Hall] [Chiba, 2017]
- Otosaru Tower [Hiroshima, 2016]
- Co-op Fuyo Plaza [Tokyo, 2016]
- Wakayama JA Bld. [Wakayama, 2013]
- Sonic City [Saitama, 1988]
- Tama City Front Bld. [Tokyo, 2014]

Residences

- The Parkhouse Chitose Karasuyama Glorio [Tokyo, 2016]
- The Parkhouse Oppama [Kanagawa, 2015]
- Laurel Tower Yuhigaoka [Tokyo, 2014]
- The Parkhouse Tama Center [Tokyo, 2016]

Commercial facilities

- Aeon Mall Musashimurayama [Tokyo, 2007]
- VINMARU [Kanagawa, 2002]
- Sunshine 60 Office Building [Osaka, 2011]
- Ariose [Tokyo, 2017]
civil engineering

roads

accomplishment

Tomizawa IC, Chubu Odan Expressway [Yamanashi, 2016]

Nukata IC, Dai 2 Toneri (Tokyo-Nagoya Expressway) [Aichi, 2015]

Kuasen Tunnel, Ken-O Expressway [Chiba, 2010]

Yawata Junction, Shin-Maekisan Expressway [Kyoto, 2017]

Kawazuchi Tunnel, National Route 115 [Fukushima, 2017]

Ikazawa Dam [Tokyo, 2016]

Kawazu Dam [Kyoto, 2017]

Railways

Odakyu Kitami train maintenance base [Tokyo, 1994]

Kita-sando Sta. [Tokyo, 2009]

Nakahata Sta. [Kanagawa, 2004]

Imizu-Ima-Kadotsubu Viaduct, Heikokutou Shinkansen [Tokyo, 2012]

Nakahata Sta. [Hiroshima, 2015]

Soshigaya Okura Sta. – Senjo Gakuen-mae Sta. [Tokyo, 2015]

Tamagawa Bridge [Tokyo, 2006]

Tama-gawa Bridge [Tokyo, 2006]

Hakone Yumoto Sta. [Kanagawa, 2009]

Owakudani Sta. [Kanagawa, 2013]

Hakone Yumoto Sta. [Kanagawa, 2009]
Civil engineering

Waterways

- Sargawa River Tunnel (Tochigi, 2014)

- Shirasagi Water supply ground (Tochigi, 2010)

- Oyama City Oyama water processing center (Tochigi, 2010)

- Inaba-muma 2nd period agricultural water conservatory project Saugahata pumping station (Chiba, 2016)

- Ryuyo water Dai 1 irrigation pumping station (Chiba, 2005)

- No.3 Vertical shaft reflow facility, Otsuka Underground Outfall Channel (Saitama, 2007)

Agricultural engineering

- Matsuoka farm pond (Kagoshima, 2003)

- Inaba-muma 2nd period agricultural water conservatory project Saugahata pumping station (Chiba, 2016)

- Ryuyo water Dai 1 irrigation pumping station (Chiba, 2005)

Water and sewage

- Oyama City Oyama water processing center (Tochigi, 2010)

- Kimitsu Futtsu Sewage treatment plant (Chiba, 2014)

- Harusaki rain water pumping station (Aichi, 2014)

- Oyama City Oyama water processing center (Tochigi, 2010)

- Zaisunokuma Dai 6 rain water main line (Fukuoka, 2015)

Developments

- Seifushinto Central City (Hiroshima, 2015)

- Development of infrastructure, Mitsui Shopping Park LaLaport Fujimi (Saitama, 2011)

- Hokusetsu Sanda Dai 2 Techno 2nd period construction (Hyogo, 2016)

- Renai Oppama development program creation (Kanagawa, 2012)

Final disposal site

- FY 2013 Act to Assume Debts No. 1, Urban area around Shin Yamashita Station outside-of-maintenance construction (Miyagi, 2016)

- Fukusuka southern urban area final disposal site (Fukuoka, 2016)

Airports

- Nagasaki airport (Nagasaki, 1975)

- Hong Kong International Airport (Hong Kong, 2004-present)

- Development of infrastructure, Mitsui Shopping Park LaLaport Fujimi (Saitama, 2011)

- Renai Oppama development program creation (Kanagawa, 2012)
Production facilities

- Mazda de Mexico Vehicle Operation (MMVO) [Mexico, 2014]
- Oji Myanmar Packaging Co., Ltd. [Myanmar, 2016]
- NPR Auto Parts Manufacturing India Private Limited [India, 2017]
- FCC Automotive Parts de Mexico S.A. DE C.V. [Mexico, 2014]
- The new 2nd Plant, JATCO Mexico, S.A. de C.V. [Mexico, 2014]
- Shimano (Kunshan) Bicycle Components Co., Ltd. [China, 2013]
- KVMRT Project [Malaysia, 2016]
- Taiwan High Speed Rail, THSR [Taiwan, 2004]
- Dubai Metro (Red Line) [United Arab Emirates, 2009]
- Tin Shui Wai Sta., KCRC [Hong Kong, 2003]
- Hang Seng Tower [China, 1993]
- Chennai Children’s Hospital [India, 2016]
- Shanghai Japanese School Pudong Campus [China, 2004]
- Kajima Kasei Jyuko Vietnam [Vietnam, 2016]
- Nikko Metals Taiwan Co., Ltd. Longtan Plant [Taiwan, 2013]
- FCC Automotive Parts Mexico [Mexico, 2014]
- Asahi Kasei Jyuko Vietnam [Vietnam, 2016]

Medical facilities, educational facilities, office buildings

- Oji Myanmar Packaging Co., Ltd. [Myanmar, 2016]
- Osaka Star Hospital [Japan, 2016]
- Osaka University [Japan, 2009]
- Osaka City University [Japan, 2007]
- Osaka University of Foreign Studies [Japan, 2006]
- Osaka University of Economics [Japan, 2005]
- Osaka Prefecture University [Japan, 2004]
- Osaka University of Health and Sport Sciences [Japan, 2003]
- Osaka University of Medicine [Japan, 2002]
- Osaka Medical College [Japan, 2001]
- Osaka University of Pharmacy [Japan, 2000]
- Osaka University of Pharmaceutical Sciences [Japan, 1999]
- Osaka University of Health and Sport Sciences [Japan, 1998]

Roads, rails and airports

- Hang Seng Tower [China, 1993]
- Chennai Children’s Hospital [India, 2016]
- Shanghai Japanese School Pudong Campus [China, 2004]
- Dubai Metro (Red Line) [United Arab Emirates, 2009]
- Tin Shui Wai Sta., KCRC [Hong Kong, 2003]
- Hang Seng Tower [China, 1993]
- Chennai Children’s Hospital [India, 2016]
- Shanghai Japanese School Pudong Campus [China, 2004]
- Dubai Metro (Red Line) [United Arab Emirates, 2009]

Urban renewal

Land readjustment project

- Kanade no Mori Specified Land Reallocation Project at the Kanade no Mori JR Tsudanuma Sta. south exit (Chiba, 2016)
- The Parkhouse Nishi Shinjuku Tower 60, Type 1 urban renewal project in the Nishi Shinjuku 5-chome central north district (Tokyo, 2017)
- Myoden area Land Reallocation Project (Chiba, 2001)
- Tomisato City, Tomisato De 2 Industrial park Land Reallocation Project (Chiba, 2006)
- Myoden area Land Reallocation Project (Chiba, 2004)
- Tomisato City, Tomisato De 2 Industrial park Land Reallocation Project (Chiba, 2006)

Equivalent exchange

- i Fort Ueno (Tokyo, 2011)
- Premier Shinjuku (Tokyo, 2017)
- Brillia Chiyoda Swomoribashi (Tokyo, 2015)

Real estate investment

- Asakusa Tower (Tokyo, 2012)
- Lefond Matado Residence (Chiba, 2015)
- Mid Residence Bunkyo (Tokyo, 2014)
- The Parkhouse Yanaka Dokanyama Residence (Tokyo, 2017)
- Ines Fukuyama (Hiroshima, 2011)
- Richmond Hotel Ohtsuzenryu Ekimae Annex (Tokyo, 2011)
- GEO takatsuki Mioi EX (Chiba, 2013)

Before

After

- ANA Crowne Plaza Hotel Kushiro (Hokkaido, 1993)
- Soma Solar Power Plant (Fukushima, 2013)
- Comfort Hotel Toyohashi (Aichi, 2016)
- Some Solar Power Plant (Fukushima, 2013)
- AHA Coene Plaza Hotel Kushiro (Hokkaido, 1993)
Value engineering for better construction and better service

Fujita introduced value engineering (VE) early on — in 1968 — in an effort to bolster the company’s construction technologies, construction capabilities, expertise, and intelligence. Today, we carry out VE activities into every field and department.

What is value engineering (VE)?

Value engineering is an engineering method for providing customers with high level of satisfaction by determining the relationship between the work (function) demanded by customers and the resources needed to provide that, and then proposing the optimal solution.

Value (V) = Function / Resources

- **Value** refers to materials, personnel, finances, time, information, and so on.
- **Resources** refers to the amount of the resources used.

VE activities deployed overseas by Fujita

Fujita conducts VE training for its in-country personnel and local construction companies. They hold VE workshops in Vietnam and China to teach the fundamentals and how to put them into practice.

Value of diversity

- In the 10 years that have passed since introducing diversity efforts, today we have promoted “diversity for a stronger Fujita” in a myriad of ways, such as forming the president’s diversity policy and setting up our diversity promotion department, and these efforts continue in 2018.
- In 2007 we introduced F-net (Fujita Comprehensive Female Employees Network) as an effort to push for greater female representation in general and create a more comfortable working environment. As a result, the ratio of female employees has increased to around 29%, for a company-wide ratio of around 12% in 2019, greater than that at the time of introduction. Additionally, the number of female managers has increased from 0 to 10, and there are a variety of role models in every branch.

Diversity activities

- In the 10 years that have passed since introducing diversity efforts, today we have promoted “diversity for a stronger Fujita” in a myriad of ways, such as forming the president’s diversity policy and setting up our diversity promotion department, and these efforts continue in 2018.
- In 2007 we introduced F-net (Fujita Comprehensive Female Employees Network) as an effort to push for greater female representation in general and create a more comfortable working environment. As a result, the ratio of female employees has increased to around 29%, for a company-wide ratio of around 12% in 2019, greater than that at the time of introduction. Additionally, the number of female managers has increased from 0 to 10, and there are a variety of role models in every branch.

Business continuity planning (BCP) to prepare against disasters and other emergencies

- At Fujita, we have implemented business continuity planning in order to fulfill our corporate responsibilities even in the event of a major natural disaster (earthquake) or other difficult circumstances. In addition to maintaining safety confirmation measures and stockpile preparations as preparatory measures, we are putting more effort into examining the safety checks, shelters, and stay-at-home/office measures to be followed during disasters and identifying yearly issues at our head office and branches, as we implement periodic training and ensure the effectiveness of these activities. We are also developing a support framework for emergencies on a regular basis through close partnerships with the customers with whom we have accident cooperation agreements. These measures have been comprehensively evaluated and authorized by the Ministry of Land, Infrastructure, Transport, and Tourism for our BCP manual.
- The BCP Promotion Department is an in-house organization that develops company-wide activities based on our company’s action plan. We introduced map and roadway information acquisition system to secure goods distribution based on our experiences in the Great East Japan and Kumamoto earthquakes. In addition to direct earthquake response, our training also includes remote area support, such as in the event of a Nankai Trough earthquake, to improve emergency response with every day.

Trainings at the practical training center for business continuity management (BCM) for Fujita and Training for the BC

Human resource training initiatives

- At Fujita, we use a personnel training system that combines OJT with our main system of QIT, which is conducted at important career milestones. For QIT, we use a COP system that takes in personal suitability and preference, allowing employees to systematically experience multiple career paths (jobs/workplaces) to provide areas to grow. Additionally, we use a career report system which helps check on an individual’s future objects while supporting them on their way.
- We conduct an OJT for a variety of purposes according to level and position, such as at Fujita Construction Academy. Furthermore, we offer language training from native instructors and overseas study to respond to global business developments.

Fujita Construction Academy, professionals inside Fujita become our professors, giving lectures based on practical experience as well as on advanced theory in order to pass down all the technology we have cultivated and improve practical skills and abilities.

Construction education activities to broaden the appeal of the construction business

Fujita’s construction education activities target the children and young people of the next generation as well as the members of the community to convey the importance of craftsmanship through construction as well as consideration for the environment.

Fujita has been developing these construction education activities so that as many people as possible will appreciate and understand the scale of the construction business, its contributions to society, its advanced technological strengths, and other appealing characteristics. Through these activities, we want to encourage the education and training of children and young people interested in becoming construction engineers who will build the future of Japan and indeed the world.

Human resource training initiatives

- At Fujita, we use a personnel training system that combines OJT with our main system of QIT, which is conducted at important career milestones. For QIT, we use a COP system that takes in personal suitability and preference, allowing employees to systematically experience multiple career paths (jobs/workplaces) to provide areas to grow. Additionally, we use a career report system which helps check on an individual’s future objects while supporting them on their way.
- We conduct an OJT for a variety of purposes according to level and position, such as at Fujita Construction Academy. Furthermore, we offer language training from native instructors and overseas study to respond to global business developments.

Trainings at the practical training center for business continuity management (BCM) for Fujita and Training for the BC

Human resource training initiatives

- At Fujita, we use a personnel training system that combines OJT with our main system of QIT, which is conducted at important career milestones. For QIT, we use a COP system that takes in personal suitability and preference, allowing employees to systematically experience multiple career paths (jobs/workplaces) to provide areas to grow. Additionally, we use a career report system which helps check on an individual’s future objects while supporting them on their way.
- We conduct an OJT for a variety of purposes according to level and position, such as at Fujita Construction Academy. Furthermore, we offer language training from native instructors and overseas study to respond to global business developments.

Trainings at the practical training center for business continuity management (BCM) for Fujita and Training for the BC

Human resource training initiatives

- At Fujita, we use a personnel training system that combines OJT with our main system of QIT, which is conducted at important career milestones. For QIT, we use a COP system that takes in personal suitability and preference, allowing employees to systematically experience multiple career paths (jobs/workplaces) to provide areas to grow. Additionally, we use a career report system which helps check on an individual’s future objects while supporting them on their way.
- We conduct an OJT for a variety of purposes according to level and position, such as at Fujita Construction Academy. Furthermore, we offer language training from native instructors and overseas study to respond to global business developments.
Creating Dreams, Building Hearts

The Daiwa House Group symbol—the Endless Heart—represents our vision of building endless emotional connections with each and every one of our customers, as well as the solidarity of the Daiwa House Group.

As a group that co-creates value for individuals, communities, and people's lifestyles, we are working to create new value for society.